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Dynamical correlations in concentrated polymer solutions 
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UK 
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Abstract. The primitive chain model of Doi and Edwards for the Brownian motion of 
concentrated entangled polymer systems is studied. The Langevin equation is solved for 
times before the chain has lost all memory of its initial configuration. The probability 
distribution is calculated in terms of the initial configuration, and the development of new 
tests of the reptation hypothesis from these results is discussed. 

1. Introduction 

Experiment (Ferry 1980) indicates that the dynamics of sufficiently long polymer chains 
in concentrated solutions and melts are radically different from free chain dynamics 
as described by the Rouse model (Rouse 1953). Such chains are sufficiently entangled 
that their motions are greatly restricted. The transition occurs for chains longer than 
a minimum entanglement length Ne where Ne is measured in Rouse segments (Rouse 
1953) and appears to be species and density independent (typically Ne - 50 for a melt). 

The reptation model of de Gennes (1971) envisages the topological constraints of 
other chains as restricting lateral motions of a given chain to such a degree that it 
behaves as if enclosed in a tube with open ends along which the chain diffuses one 
dimensionally. Tube is continuously being lost at one end where a chain end gets 
dragged inwards and gained at the other where the chain end emerges with random 
orientation. 

Doi and Edwards (1978) introduced the notion of the primitive chain as the centre 
line of the tube averaged over times for which it diffuses coherently along its own 
length with constant arc length L. The primitive chain is a random walk of N steps 
of length a reflecting the experimentally observed fact that Gaussian statistics are 
recovered in dense systems due to screening. The step length a is taken as the 
root-mean-square end-to-end distance of a segment of Gaussian chain of length Ne 
and can also be thought of as the tube diameter. Thus if the real chain has No Kuhn 
steps of length b the relations 

a’= Neb2 N = No/ Ne L =  Na 

define a, N and L given Ne. 
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Doi and Edwards (1978) calculated the time for a chain to disengage from its tube, 
the so-called reptation time 

rreP = L2/ D r 2  (1) 

where the curvilinear diffusion constant D is given by 

D = kT/ Nov. 

Y is the friction coefficient per real chain bond. From (1) and ( 2 )  we see rreP- L3. 
In the following section the equation of motion for the primitive chain is expressed 

in continuous form and solved for short times when each end of the chain disengages 
from its initial tube independently. In the next section the probability distribution 
function is calculated in terms of the initial configuration, and we conclude with a 
discussion of applications of these results. 

2. Langevin equation 

Doi and Edwards (1978) expressed the Langevin equation as a difference equation. 
The primitive chain consists of N points R,, n = 1, N, where the step length 
IR,,,, - RnI = a is fixed. In a time At  the primitive chain hops exactly one step backwards 
or forwards with equal probability, i.e. the chain performs a random walk along its 
own length with curvilinear diffusion constant 

D = a2/2At.  (3) 
We define the random variables (’( t ) ,  q’( t )  to assume the values 1,0, respectively, 

when the chain hops forward and O , l ,  respectively, when it hops backward. The 
random isotropic vectors &’( t )  and q‘( t )  ( 6  = 16’1, q ’ =  lq’l) correspond to the new 
segments chosen by the ‘head’ i = 1 and ‘tail’ i = N respectively. Thus the Langevin 
equation is 

Rn ( t + A t >  - Rn ( t )  = 5’( t )  [ Rn+ 1 ( t 1 - Rn ( t ) l -  T ’ (  t>[ Rn ( t )  - Rn - 1 ( t )I 2 s n s N  

R , ( t + A t )  - R I ( ? )  = u q ’ ( t )  k 5 ’ ( t ) [ R 2 ( t )  - R , ( t ) ]  (4) 
R N (  t + A t )  - R N (  t )  = a&’( t )  - q’( t ) [  R N (  t )  - RN-, (  t ) ] .  

The continuous limit of (4), where s = nu is the arc length, is 

where 

& = S‘a/At and q = q’a/At .  (6) 
We can condense equations ( 5 )  into a single equation by defining the functions 

(7) 
S Z L  
s = L. A ( s )  = B ( s )  = 
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Thus the Langevin equation becomes 

(8) 
aR aR 
a t  as  

(t(t)t(t’))= W t - t ’ )  (9) 

-+ (t( t )A(  S )  - q( t ) B (  s)) - = &( t ) d (  S )  + q( t ) d (  s - L ) .  

The statistics of t ( t )  (and similarly for q ( f ) )  are expressed by 

with D given by equation (3). The functions A and B have width equal to one step 
length of the chain, namely a. For convenience we take 

A ( s )  = 1 -exp(-s/a) B ( s ) =  1-expt-(L-s)/a].  (10) 
We consider (8) for times before the chain has disengaged from its initial tube. 

Since for these times the chain ends behave independently we consider the case of 
disengagement from one end (s = 0) of the initial tube R ( s ,  0) only, i.e. L+m. Then 
B ( s )  = 1 and (8) becomes 

The method of solution of (1 1) is described in appendix 1 and yields 

The result can be understood by noting that 

lim a ln(exp(x/a)+exp(y/a)) = max(x, y )  
0-0 

where max(x, y)  selects the maximum of x and y. 
Defining the net distance the chain hops along itself in the time t l  to t ,  

D ( 4 ,  t 2 ) = { f k ( t ) - 7 ( t ) ) d t  

we can write (12) as 

R(s ,  t )  = R(max[s - D(0, t ) ,  {-D(0, t ’ ) ,  t ’ E  (0, t)}], 0) 
rr + J dt’ f (  t‘)as(max[s - D( t ’ ,  t ) ,  {-D( t’, t , ) ,  t l  E ( t ’ ,  t)}]). 
0 

We now define B ( t , ,  t 2 )  to be the maximum distance the chain gets dragged 
backwards in the interval ( t l ,  t 2 )  

a(tl, t 2 )  =max[(-Wt,,  0, t ’ ~  ( t l ,  f2)}1. (14) 
We can now interpret (13) as follows. The first term is the initial tube part (figure 

1). If s - D(0, t )  > B(0,  t )  then s is still inside the initial tube but shifted D(0, t )  so 
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New tube 

I nit tal t u  be 
ff k, 0) 

Figure 1. By the time f an amount B(0 ,  f )  of the initial tube has been lost (broken curve). 
In the illustration s is still inside the initial tube. 

we get R ( s  - D(0, t ) ,  0). If s - D(0, t) < B(0, t )  we get R( B(0,  t ) ,  0). The second term 
is a sum of random head vectors which comprise the new tube. A [( t ’ )  is accepted if 
max[s - D( t’ ,  t ) ,  B (  t ‘ ,  t ) ]  = 0. This occurs provided 

(a) D( t ’ ,  t) > s, i.e. in the time t ’ +  t ,  s gets dragged past the position occupied 
by the head at the time of creation 2’; 

(b) B(  t’ ,  t )  = 0, i.e. in t ’ +  t the head never gets dragged backwards. 

3. Probability distribution 

In this section we calculate P ( [ r ( s ) ] ,  t ;  r o ( s ) )  the probability at time t of a configuration 
r ( s ) ,  given arbitrary initial configuration ro( s). 

The progressive disengagement of the primitive chain from its initial tube is 
illustrated in figure 2. We write 

P([r(s)l, t; ~ o ( s ) )  = Pin([*(s)I, t)+Pout([r(s)]$ t ) .  (15) 

Here Pi, (Pout) is the probability a chain is still inside (outside) its initial tube and 
has configuration r (  s). We consider the two contributions separately. 

3.1. Chains still inside initial tube at  time t 

We define M(x, y, h, t )  dx dy dh to be the number of such chains at time t whose 
configurations are characterised by x, y and h (figure 2).  x and y are the amounts of 
initial tube lost at the head and tail ends respectively. h is the net distance hopped 
forward. M(x, y, h, t )  dx dy dh equals the number of one-dimensional random walks 
of end-to-end distance h lasting a time t and characterised by diffusion constant D 
(as defined in equation (3) ) ,  whose maximum extents in the + h  and -h  directions are 
x and y respectively (see figure 3) .  We now relate M to g(x, y, h, t )  dh defined to be 
the total number of walks in a one-dimensional box of length x + y starting a distance 
x from one edge and of end-to-end distance h. 

It is well known that g obeys the diffusion equation with boundary conditions such 
that g vanishes at the edges of the box: 

n27r2Dt 
sin n7r(x + h ,  exp( - F ) .  2 n 7rx 

g(x, y, h, t ) = -  f sin- (17) 
X + Y  n = l  X + Y  X + Y  X + Y ) 2  
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Figure 2. Successive stages in the disengagement of the primitive chain from its initial 
tube. ( a )  Initial configuration r,,(s). ( b )  Lengths x , y  of initial tube have been lost and 
the chain has hopped forward a net distance h. The lengths x + h and y - h of new tube 
are random walks. ( c )  At the moment of disengagement x + y =  L. (d)  Chain reptates 
away. ( e )  The disengagement may happen ‘tail first’ instead of ‘head first’ as depicted in 
(C) .  

- x - -  Y * 

Figure 3. Representation of a one-dimensional random walk of end-to-end length h whose 
maximum extents in the -h  and + h  directions are x and y respectively. 
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We see that the number of walks in this box whose greatest extent in the -h 
direction lies between x and x + d x  is given by 

[g(x+dx,y,  h, t)-g(x,y,  h, t ) ]dh=(ag/ax)dxdh+O(dx2) .  

Repeating this for the +h direction we obtain in the limit dx, dy + 0 

M ( X, y, h, t )  = a2g/ ax ay. (18) 

Since portions of chain outside the initial tube are sums of uncorrelated ‘head’ or 
‘tail’ vectors they are random walks which we describe by the Wiener measure. Pin is 
a sum over all possible x,y and h with delta functions expressing the fact that the 
central part of r(s)  lies inside the initial tube 

where 

N,+, is the normalisation for the Wiener measure. 

3.2. Chains outside initial tube 

We define f ( r l  - r,, t )  to be the probability that the end s = 0 or s = L of a chain in 
equilibrium (i.e. having a random walk distribution) is at rl at time t given its position 
r, at time t = 0. f is simply the inverse Fourier transform of the incoherent scattering 
factor Sincoh( k, t, s) for s = 0, as calculated by Doi and Edwards (1978). Thus 

d3k exp[ -ik - ( rl - rO)]Sincoh(k, t, 0) 

+ ” sin’ pp exp( -4Dtp;l L2) 
P 2 +  P;  + p 

where p =&k2aL and ap and p p  are the solutions of 

p p  cot p p  = -p.  (20) 

Consider a chain which leaves the initial tube ‘head first’ at time t l  from ro(x) (see 
figure 2( c ) ) .  This happens with probability M(x, L - x, L - x, t l ) .  The probability that 
such a chain has configuration r ( s )  at time t is thus proportional to 

f f p  tan aP = 

M(x, L-x, L-x, t l)f(r(L)-ro(x),  t - t l )NLexp -- [ l a  loL (Z )  ds] 
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where the Wiener measure describes the fact that a chain is a random walk once out 
of the tube. Summing over all exit points and times and including chains which leave 
‘tail first’ (figure 2( e)) gives 

Po,,( [ r( s )] ) = NL exp [ - & I (:) * ds ] D I ‘ d t l  I dx[ M ( x ,  L - x, L - x,  tl ) 
0 0 0 

= N L e x p [ - & J ‘ : ( ~ ) 2 d s ] D ~ ~ d ~ l ~ o L d x [ M ( x , L - x ,  L - x , t , )  

where M is given by (17) and (18) and f by (20). 

4. Discussion 

The results presented in this paper enable the straightforward calculation of many 
dynamical correlations (O’Shaughnessy 1986); it is hoped they will help to provide 
new tests of the reptation model on a microscopic level. At present the clearest 
experimental evidence for reptation dynamics derives from measurements of bulk 
properties: in particular the molecular weight dependence of macroscopic diffusion 
coefficients (Klein 1978, Klein and Briscoe 1979) and viscoelastic properties (Ferry 
1980). Other experiments probe at the microscopic level. For example the pulsed field 
gradient nuclear magnetic resonance technique (Callaghan and Pinder 1980) and 
neutron scattering measurements on stretched polymers as they relax (BouC et al 1982) 
have yielded some information on dynamics for short times, ts T , , ~ .  Another bulk 
approach has been the measurement of mechanical strength at a polymer-polymer 
interface (Jud er al 1981) welded by polymer interdiffusion. These measurements have 
been interpreted in terms of short timescale dynamics (de Gennes 1980, Prager and 
Tirrel1981). These experiments suffer from the difficulty of interpretation of the results 
in terms of microscopic dynamics. 

Another potential probe of dynamics is the measurement of diffusion-limited 
reaction rates. Doi (1975) has analysed intramolecular reaction rates in dilute systems 
and de Gennes (1982) considered the intermolecular case for both dilute and entangled 
systems. Bernard and Noolandi (1983) have calculated cyclisation reaction rates for 
reptating chains, i.e. a reactive group at each chain end. The distribution (19) has 
been used to calculate intramolecular reaction rates for reactive groups a t  two arbitrary 
positions along the chain (O’Shaughnessy 1986). The rates are highly sensitive to the 
positioning of the groups and are very specific to the reptation model; their measurement 
therefore constitutes a new and direct test of the reptation model. 
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Appendix. Solution of equation (I  1) 

A method of solution for equations of this type is described in Martin and Reissner 
(1961). The solutions are of the form 

f [u(s, t ) ,  44 s, t ) l  = 0 (AI) 

where f is an arbitrary function of U and U and 

(‘42) 
ds 
d t  u(s,  t )  = c, is the solution of - - = S ( t ) A ( s ) - v ( f )  

(A3) 
dR 
dt  

u(R, s, t )  = c2 is the solution of -=f(t)as(s) 

and c , ,  c2 are constants. 
Integrating (A2) after using (10) yields 

s ( t ) =  [otdr’(5(r’)-v(t’))+a In[cl-![of dt’t( t’)  e x p ( - ~ [ o r ’ ( t ( f l ) - ~ ( t l ) )  dt,)]. 

Integrating (A3) and using (A4) we obtain 

Thus, solving (A4) and (AS) for c,  and c2 

Taking 

fl: U, U] = R( a In U, 0) - U 

in order to satisfy the initial conditions R(s, 0), we obtain the solution (12). 
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